






    
      Navigation

      	
          index
	
          modules |
	
          next |
	
          previous |
	home| 
	search| 
	documentation  »
	Reference »


    


      
        
  Previous topic

  Parameters

  Next topic

  puqutil - Output Functions for PUQ

  This Page

  	Show Source



  Quick search

    
      
      
      
      
    

    
    Enter search terms or a module, class or function name.
    




        

      


    
      
        
          
            
  
PDF¶

	
class puq.PDF(xvals, yvals)¶
	Create a PDF (Probability Density Function) object.

Use this to create a PDF object given a list or array
of x values the corresponding PDF values.

	Parameters:		xvals (1D array or list) –
x values
	yvals (1D array or list) –
values for PDF(x)





	
__add__(b)¶
	Add two PDFs, returning a new one.





	
__div__(b)¶
	Divide two PDFs, returning a new PDF





	
__mul__(b)¶
	Multiply two PDFs, returning a new PDF





	
__sub__(b)¶
	Subtract two PDFs, returning a new PDF





	
cdf(arr)¶
	Computes the Cumulative Density Function (CDF) for some values.

	Parameters:	arr –
Array of x values.
	Returns:	Array of cdf(x).






	
ds(num)¶
	Generates a descriptive sample for this distribution.

The order of the numbers
in the array is random, so it can be combined with other arrays
to form a latin hypercube.
This method is used by LHS.

	Parameters:	num – Number of samples to generate.
	Returns:	1D array of length num.






	
ds1(num)¶
	Generates a descriptive sample in [-1,1] for this distribution.

The order of the numbers
in the array is random, so it can be combined with other arrays
to form a latin hypercube. Note that this can return values
outside the range [-1,1] for distributions with long tails.
This method is used by puq.Smolyak.

	Parameters:	num – Number of samples to generate.
	Returns:	1D array of length num.






	
lhs(num)¶
	Latin Hypercube Sample for this distribution.

The order of the numbers in the array is random, so it can be
combined with other arrays to form a latin hypercube.
This method is used by LHS.

	Parameters:	num – Number of samples to generate.
	Returns:	1D array of length num.






	
lhs1(num)¶
	Latin Hypercube Sample in [-1,1] for this distribution.

The order of the numbers
in the array is random, so it can be combined with other arrays
to form a latin hypercube. Note that this can return values
outside the range [-1,1] for distributions with long tails.
This method is used by puq.Smolyak.

	Parameters:	num –
Number of samples to generate.
	Returns:	1D array of length num.






	
mode¶
	Find the mode of the PDF.  The mode is the x value at which pdf(x)
is at its maximum.  It is the peak of the PDF.





	
pdf(arr)¶
	Computes the Probability Density Function (PDF) for some values.

	Parameters:	arr –
Array of x values.
	Returns:	Array of pdf(x).






	
plot(color='', fig=False)¶
	Plot a PDF.

	Parameters:		color (String.) – Optional color for the plot.
	fig (Boolean.) – Create a new matplotlib figure to hold the plot.



	Returns:	A list of lines that were added.








	
ppf(arr)¶
	Percent Point Function (inverse CDF)

	Parameters:	arr –
Array of x values.
	Returns:	Array of ppf(x).






	
random(num)¶
	Generate random numbers fitting this parameter’s distribution.

This method is used by MonteCarlo.

	Parameters:	num – Number of samples to generate.
	Returns:	1D array of length num.






	
range¶
	The range for the PDF. For PDFs with long tails,
it is truncated to 99.99% by default.  You can
customize this by setting options[‘pdf’][‘range’].

	Returns:	A tuple containing the min and max.






	
srange¶
	The small range for the PDF. For PDFs with long tails,
it is truncated to 99.8% by default.  You can
customize this by setting options[‘pdf’][‘srange’].

	Returns:	A tuple containing the min and max.










	
puq.ExponPDF(rate)¶
	Creates Exponential Probability Density Function.

	Parameters:	rate – The rate parameter for the distribution. Must be > 0.
	Returns:	A PDF object


See http://en.wikipedia.org/wiki/Exponential_distribution





	
puq.NormalPDF(mean, dev, min=None, max=None)¶
	Creates a normal (gaussian) Probability Density Function.

	Parameters:		mean – The mean.
	dev – The standard deviation.
	min – A minimum value for the PDF (default None).
	max – A maximum value for the PDF (default None).



	Returns:	A PDF object




For the normal distribution, you must specify mean and dev.

	Example:	


>>> n = NormalPDF(10,1)
>>> n = NormalPDF(mean=10, dev=1)
>>> n = NormalPDF(mean=10, dev=1, min=10)









	
puq.RayleighPDF(scale)¶
	Creates Rayleigh Probability Density Function.

	Parameters:	scale – The scale. Must be > 0.
	Returns:	A PDF object


See http://en.wikipedia.org/wiki/Rayleigh_distribution





	
puq.TrianglePDF(min, mode, max)¶
	Creates a triangle Probability Density Function.

See http://en.wikipedia.org/wiki/Triangular_distribution

	Parameters:		min – The minimum value
	mode – The mode
	max – The maximum value



	Returns:	A PDF object




You can enter the parameters in any order. They will be sorted so that the mode
is the middle value.





	
puq.UniformPDF(min=None, max=None, mean=None)¶
	Creates a uniform Probability Density Function.

	Parameters:		min – The minimum value
	max – The maximum value
	mean – The mean value



	Returns:	A PDF object




For the uniform distribution, you must specify two of (min, max, and mean).
The third parameter will be calculated automatically.

	Example:	


>>> u = UniformPDF(10,20)
>>> u = UniformPDF(min=10, max=20)
>>> u = UniformPDF(min=10, mean=15)









	
puq.WeibullPDF(shape, scale)¶
	Creates Weibull Probability Density Function.

	Parameters:		shape – The shape. Must be > 0.
	scale – The scale. Must be > 0.



	Returns:	A PDF object




See http://en.wikipedia.org/wiki/Weibull_distribution





	
puq.ExperimentalPDF(data, min=None, max=None, fit=False, bw=None, nbins=0, prior=None, error=None, force=False)¶
	Create an experimental PDF.

An experimental PDF is derived from the results of an experiment or
measurement of some parameter.  It has actual data attached to it.
That data is then used to create a PDF by one of three different methods.

The PDF can built by binning the data and linearly
interpolating, using a Gaussian KDE, or using Bayesian Inference.

	Parameters:		data (Array of scalars) – Our quantity of interest.
	nbins (int) – Number of bins (used if fit is false).  Default is
2*IQR/n^(1/3) where IQR is the interquartile range
of the data.
	fit (True or “Gaussian”) – Use Gaussian KDE (default=False)
	bw (string or float. String must be ‘scott’ or ‘silverman’) – Bandwidth for Gaussian KDE (default=None)
	prior (PDF) – Prior PDF to use for Bayesian Inference.
[default=None (uninformative)]
	error (PDF. Typically a NormalPDF with a mean of 0.) – Error in the data.  For example, the measurement error.
Required for Bayesian.









	
puq.HPDF(data, min=None, max=None)¶
	Histogram PDF - initialized with points from a histogram.

This function creates a PDF from a histogram.  This is useful when some other software has
generated a PDF from your data.

	Parameters:		data (2D numpy array) – A two dimensional array. The first column is the histogram interval mean,
and the second column is the probability.  The probability values do not need to be
normalized.
	min – A minimum value for the PDF range. If your histogram has values very close
to 0, and you know values of 0 are impossible, then you should set the *min* parameter.
	max – A maximum value for the PDF range.



	Returns:	A PDF object.








	
puq.NetPDF(addr)¶
	Retrieves a PDF from a remote address.

	Parameters:	addr – URI. PDF must be stored in JSON format
	Returns:	A PDF object
	Example:	


>>> u = NetPDF('http://foo.com/myproject/parameters/density')













          

        

      

      

    

    
      Navigation

      	
          index
	
          modules |
	
          next |
	
          previous |
	home| 
	search| 
	documentation  »
	Reference »


    

    
        © Copyright 2014, Martin Hunt, Purdue University.
      Created using Sphinx 1.2.1.
    

  